
An ARCHITECTURE MODEL for MANAGING
TRANSACTIONS in DISCONNECTED MOBILE

ENVIRONMENT
J.LWalter Jeyakumar#1, R.S.Rajesh#2

#Department of Computer Science and Engineering
Manonmaniam Sundaranar University,

Tirunelveli, Tamilnadu, INDIA

Abstract— We present an architecture model for mobile
transaction management for supporting disconnected computing.
In this environment, Fixed Agents in the wired network cache
the frequently accessed data from the server, which can be
accessed concurrently by the mobile nodes. Data Access Manager
module at the Fixed Agent controls the concurrency using
invalidation technique. Using this scheme, a mobile host can
assign its transaction execution to Data Access Manager at the
Fixed Agent before disconnection. We have proposed two types
of transactions namely trusted and non trusted transactions. Non
trusted transaction can be allowed to execute without
authentication. But a trusted transaction can be executed after
running a trust protocol. The proposed transaction management
framework has been simulated in J2ME and NS2 and
performance of the scheme is analysed.

Keywords— Mobile transaction, Fixed Agent, Concurrency
control, Cache invalidation.

I. INTRODUCTION

 In mobile computing environment, the transaction
processing models should incorporate the shortcomings of
mobile computing such as unreliable communications,
frequent disconnections, limited battery power, low bandwidth
communications and reduced storage capacity. Frequent
aborts due to disconnection should be minimized in mobile
transactions. Correctness of transactions executed on both
fixed and mobile hosts must be ensured by the operations on
shared data. Blocking of mobile transactions due to long
disconnection periods should be minimized to reduce
communication cost and to increase concurrency. After
disconnection, mobile host should be able to process
transactions and commit locally. Mobile computing provides
the possibility of concurrent access of data by mobile hosts
which may result in data inconsistency. Concurrency control
methods have been used to control concurrency. Due to
limitations and restrictions of wireless communication
channels, it is difficult to ensure consistency of data.

 In this paper, we present an agent based framework for
transaction processing. Frequently accessed data are cached in
the Fixed agent situated in the fixed wired network. Whenever
an MH enters into a Fixed agent area it can connect and access
the data in the cache. But upon update request by a MH,

updation is done at the local cache and invalidation report is
sent to all the mobile hosts which have already accessed the
same data. This will force the mobile hosts to refresh their
data values. Data Access Manager at the fixed agent is
responsible for concurrency control and data invalidation.
This framework also takes into account transaction update
during disconnection. Trusted and non trusted transactions are
treated separately.

 The remaining part of this paper is organized as follows.
Section II summarizes the related research. Section III focuses
on the agent based frame architecture. Section IV specifies the
proposed framework for disconnected mobile computing.
Section V gives the performance analysis and in Section VI
the conclusion is presented.

II. RELATED WORK

 When simultaneous access to data is made at the server,
concurrency control techniques are employed to avoid data
inconsistency. Conventional locking based concurrency
control methods like centralized Two Phase locking and
distributed Two Phase locking are not suitable for mobile
environment. The system overhead that arises due to
concurrency control mechanism can create a serious
performance problem because of low capacity and limited
resources in mobile environment [1]. More over, it makes
mobile hosts to communicate with the server continuously to
obtain and manage locks [2].

 In Timestamp approach, the execution order of concurrent
transactions is defined before they begin their execution. The
execution order is established by associating a unique
timestamp to every transaction. When two transactions
conflict over a data item, their timestamps are used to enforce
serialization by rolling back one of the conflicting transactions
[3]. In optimistic concurrency control with dynamic time
stamp adjustment protocol, client side write operations are
required. But it may never be executed due to delay in
execution of a transaction[4]. In multi version transaction
model [5], data is made available as soon as a transaction
commits at a mobile host and another transaction can share

J.L.Walter Jeyakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 545-550

545

this data. But data may be locked for a longer time at a mobile
host before the lock is released at the database server.

 In [6], a transaction model for supporting mobile
collaborative works was proposed. This model makes use of
Export-Import repository which is a mobile sharing work
space for sharing data states and data status. But in the Export-
Import repository based model, locking is the main technique
which has the following disadvantages. (i) More bandwidth is
needed for request and reply since the locking and unlocking
requests have to be sent to the server. (ii) Disconnection of
mobile host or a transaction failure will result in blocking of
other transactions for a long period.

 In [7] , AVI (Absolute Validity Interval) was introduced
for enforcing concurrency control without locking. AVI is the
valid life span of a data item. But it calculates AVI only
based on previous update interval. In [8], a method based on
PLP(Predicted Life Period), which takes care of the
dynamicity of the life time of data was proposed. Here, life
span of data is predicted based on the probability of updation
of data item. This method makes PLP of data item very close
to the actual valid life span of a data item. The above
mentioned research works have made little or no attempts on
the disconnected issues. But our approach takes into account
the disconnection issue and also trusted and non trusted
transaction cases which are specific to applications such as
Banking or Credit Card transactions.

III. AGENT BASED ARCHITECTURE

 The proposed Agent based architecture model is illustrated
in Fig 1. The model consists of Server, Fixed Agents and
Mobile Hosts. The server can be directly connected to a
mobile host. Fixed Agents are connected to the server through
wired/wireless network. Fixed Agent has a communication
range and any mobile host that enters into the agent area can
connect to the server through the agent.

 In Fixed Agents, cache is used to store the data. Mobile
hosts are allowed to access data from the cache. When data
request is made for the first time, data is retrieved from the
server and stored in the cache. Subsequent requests are
handled by the Data Access Manager module itself. When a
mobile host requests for data update, after local updation of
the data item, invalidation report is sent to all the mobile
hosts that have already accessed the same data. This makes
all the mobile hosts to refresh their data values. When a
mobile host is disconnected from the Fixed agent after
updation request, the updation task is transferred to the Data
Access Manager in the Fixed Agent. Data Access Manager
module is used to coordinate the operations in the cache.

 – Fixed Agent
 – Connected MH
 – Disconnected MH

 Fig. 1 Agent Based Architecture model

IV. MOBILE TRANSACTION FRAMEWORK

 Mobile hosts can directly connect to the server. But
simultaneous access to data at the server will increase the
system overhead. To overcome this disadvantage, data are
cached in the Fixed Agent. The Data Access Manager at the
Fixed Agent is responsible for enforcing concurrency and
cache invalidation. Fig 2 and 3 illustrate the steps involved in
MH, server and DAM algorithms.

A. Concurrency Control mechanism

 When more number of mobile hosts are accessing data
simultaneously the problem of data inconsistency arises. This
problem can be solved if we use an efficient concurrency
control mechanism. When data request is made for the first
time, data is retrieved from the server and stored in the cache.
Future requests for data are managed directly by the Data
Access Manager.

 Data Access Manager uses a suitable data item format to
store data in the cache [8]. It has (id, TLU, PLP, dataval, NT)
where id denotes unique Id of the data item, TLU indicates
time of Last Update, PLP is Predicted Life Period, dataval is
current value of the data item and NT denotes number of
transactions that concurrently access the data item.

 When Data Access manager fetches data for the first time
from the server, it sets TLU to current time, PLP to optimal

Server

J.L.Walter Jeyakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 545-550

546

time based on the nature of data item and NT to 1. NT is
incremented whenever a new data access request is made.
Data in the cache becomes invalid, once it is updated in the
server. Life span of a data item is predicted using PLP. It
makes use of the probability of updation as a basis for setting
valid life span of a data item. In PLP interval, data item is
valid and all the mobile hosts can access same data item
concurrently.

 When a MH makes update request or PLP expires, the data
item is invalidated. Now PLP is modified and invalidation
report is sent. The predicted life period of data item is
computed using the formula
PLP=PPLP ± (p*PPLP)
Where PPLP is Previous Predicted Life Period and p is
predicted probability of updation of data item. p =
Total_updates / NT. It is the ratio of data item update to data

Connects to the Server

Get a copy of data item
from DAM by Read

request

If Data
Update

Trusted
Transaction

update
No

Is MH about to
be

disconnected

Run Trust
Protocol

Yes

Yes

Assign updation task to
DAM and Disconnect

No

Send updation
request to DAM

Yes

Wait for connection

Connection
Request

Yes

If Data
Read

Yes

Send
Data Item

No

If Data
Update

Yes

Update Data &
send invalidation
Confirmation with

updated data

No

No

Mobile Host Server

 Fig. 2 Flow Diagram for Mobile Host and Server

Exit

No

J.L.Walter Jeyakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 545-550

547

item access. Since predicted probability of updation is based
on recent past history of updation rate, it is highly probable

Wait for MH Request

Read
Request

No

Yes

In Cache
of FA

No

Fetch Data from Server &
initialize data item format

Send data to
MH

Yes
Update

NT

Update
Request

Data Access Manager

Disconnected
Update

Request

Yes

Is Trusted
Transaction

Yes
Run Trust Protocol

Update locally & send
Invalidation

report

Forward update
request to server

Server
update/

PLP
expiration

Fig. 3 Flow Diagram for Data Access Manager

Update data item
format

Is disconnected
Transaction

update

Yes

Generate updation report & forward it to the MH
when reconnection

Yes

No

No

No

No

Yes

J.L.Walter Jeyakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 545-550

548

that PLP is very close to the actual validity interval of the data
item.

B. Transaction execution in the MH

 After connecting to the server, MH gets a copy of a data
item from the Data Access Manager using read request. If the
MH wants to update data, it first checks whether it is a
transaction update or not. If trusted transaction update, it runs
a trust protocol for authentication. If the MH is about to be
disconnected, the updation task is assigned to the DAM before
disconnection. Otherwise update request is sent to DAM.

C. Function of Data Access Manager and Server

 When MH makes a read request, if it is in the cache of the
Fixed Agent, NT is incremented by one. Otherwise, data is
fetched from the server and data item format is initialized.
Then data is sent to MH.

 When MH makes an update request, if it is a trusted
transaction update, it runs a trust protocol for authentication.
DAM updates data locally and invalidation report is sent to all
the mobile hosts that have already accessed the same data item.
This forces all the transactions to refresh their data values.
This update request is now forwarded to the server. The server
updates the data and sends invalidation confirmation along
with the updated value. Once Data Access Manager receives
the confirmation, it updates the data in the cache. The data in
the cache is invalidated if updation is made in the server or
PLP expires.

 If transaction update is made by the Data Access Manager
for the disconnected MH, the above procedure is followed
except that at the end, DAM generates updation report and
forwards it to the MH when it gets reconnected.

V. PERFORMANCE ANALYSIS

 Simulation for the framework is done in Pentium Dual
Core System @ 2.4 GHz with 3 GB RAM using J2ME and
NS2. The results of the analysis are shown in Fig 4 and 5.
Response time is calculated as the time taken to service the
request made by the mobile host.

 For trusted transactions without disconnection, the
response time is more, compared to the non trusted
transactions without disconnections. This is due to the extra
time required for running the trust protocol. The analysis also
shows that the same is true for transactions with
disconnections. Also transactions without disconnections
take less response time compared to transactions with
disconnections for both trusted and non trusted operations.

Table 1 Response time for Transactions
without Disconnection

0

2

4

6

8

10

12

0 2 4 6 8 10 12

R
e
sp
o
n
se
 T
im

e
 i
n
 S
e
c.

No. of Transactions

Non Trusted Trusted

Fig. 4 Analysis of Response time for
Transactions without disconnection

 No. of
transactions

Response time in
Seconds

Non
Trusted

Trusted

1 8 9.2
2 5.6 5.9
3 6.1 7.2
4 6.5 7.9
5 7.1 8.4
6 7.4 8.8
7 7.7 9.5
8 8.1 9.9
9 8.4 10.3
10 8.7 11

J.L.Walter Jeyakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 545-550

549

Table 2 Response time for Transactions
with Disconnection

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

R
e
sp
o
n
se
 T
im

e
 i
n
 S
e
c

No. of Transactions

Non Trusted Trusted

Fig. 5 Analysis of Response time for
Transactions with Disconnection

VI. CONCLUSION

 In this paper, we have proposed a transaction framework
for disconnected mobile computing environment. We make
use of Fixed Agents in the wired network to store the cache.
This cached data can be accessed by the mobile hosts when
they get connected. By using a Fixed Agent and concurrency
control with out locking for accessing data, we claim that
message communication costs and database update costs are
minimized to a larger extent. When mobile hosts are
disconnected, transaction update task can be transferred to the
Fixed Agent. We also distinguish between non trusted and
trusted transactions using a trust protocol.

REFERENCES

[1] Vijay Kumar, “Mobile Database Systems”, WILEY INTERSCIENCE,
2006

[2] Victor C.S., Kwok wa Lam and Son, S.H., “Concurrency Control Using
Timestamp Ordering in Broadcast Environments”, The Computer Journal,
Vol.45 No.4, 2002, pp. 410-422.

[3] P.A Bernstein, V. Hadzilacos and N. Goodman, ”concurrency control
and Recovery in Database Systems”, Addison Wesley, 1987.

[4] Ho-Jin Choi, Byeong-Soo Jeong, “A Timestamp Based Optimistic
Concurrency Control for Handling Mobile Transactions”, ICCSA 2006,
LNCS 3981, 2006, pp.796-805.

[5] Madria, S. K., M. Baseer, and S. S. Bhowmick, “A Multiversion
Transaction Model to Improve Data Availability in Mobile Computing,”
CoopIS/DOA/ODBASE, 2002, pp. 322-338.

[6] Le, H. N., and M. Nygård, “A transaction model for Supporting mobile
Collaborative Works,” IEEE, 2007, pp. 347-355.

[7] Salman Abdul Moiz, Mohammed Khaja Nizamuddin,” Concurrency
Control without Locking in Mobile Environments”, IEEE, 2008, pp. 1336-
1339.

[8] Miraclin Joyce Pamila J.C and Thanuskodi K, “Framework for
transaction management in mobile computing environment”, ICGST-CNIR
Journal, 2009, pp. 19-24.

No. of
transactions

Response time in
Seconds

Non
Trusted

Trusted

1 11.2 14.5
2 9.4 11.6
3 9.6 11.7
4 9.8 12.1
5 10.3 12.5
6 10.7 13.3
7 10.9 13.8
8 11.3 14.4
9 11.7 15.3
10 12 15.9

J.L.Walter Jeyakumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 545-550

550

